Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 255: 121489, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552489

RESUMO

In the context of global climate change, sudden rainstorms and typhoons induce fluctuations in hydraulic shocks to wastewater treatment plants (WWTPs) in coastal areas, causing two challenges of stable effluent quality and low-carbon operation. We established a quantitative evaluation method for resistance of wastewater treatment processes to hydraulic shocks based on the water-energy-carbon nexus using operational data from a WWTP in southeast coastal China from July 2018 to December 2022. The effects of hydraulic shocks on the operational stability of the anaerobic-anoxic-oxic-membrane bioreactor (A2/O-MBR) process were analyzed following five steps. The results showed that the gray water footprint (GWF) of the process was 9.3% lower than that of the A2/O process. The energy footprint (ENF) and carbon footprint (CF) were approximately 2.1 times and 1.7 times higher than those of the A2/O process, respectively. The resistance to hydraulic shocks of the A2/O-MBR process is approximately 5.5 times higher than that of the A2/O process. In conclusion, the A2/O-MBR process exhibits higher process operational stability when subjected to hydraulic shocks, which is more conducive to the efficient and stable operation of WWTPs in rainstorm and typhoon-prone areas. The evaluation methodology provides qualitative technical support for selecting upgrading processes for WWTPs in different regions.

2.
Sci Total Environ ; 902: 166017, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544450

RESUMO

Wastewater treatment plants (WWTPs) are a significant anthropogenic source of greenhouse gas (GHG), but the quantitative assessment of GHG emissions from WWTPs in vulnerable water areas under stricter discharge limits remains unclear. Herein, depending on a case WWTP in southern China, we investigated the impacts of discharge standard improvement and key drivers of GHG emissions using daily operating data. We demonstrated that the stricter discharge limits increased the total GHG emission intensity by 18.2 %, with direct emissions increasing more than indirect GHG emissions. The GHG emissions were negatively correlated with water quantity, showing the scale effect, which became more pronounced after the discharge standard improvement. Increasing influent chemical oxygen demand and total nitrogen concentrations significantly drove the variations in GHG emissions, which were accelerated under stricter discharge limits. This study provides insights into the evaluation of GHG emission from WWTPs in vulnerable water areas and carbon-neutral wastewater management policies.

3.
Materials (Basel) ; 15(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35207998

RESUMO

Longitudinal cracking in shear keys is one of the most frequently recurring problems in the adjacent precast concrete box beam bridges. The relative displacement across the shear key (RDSK) under loads has been used as a direct indicator for shear key cracking. Therefore, accurately simulating the interface between the shear key and beam or providing the correct relationship between shear transfer and RDSK is key to evaluating the damage of the shear key. In this study, the shear transfer properties of four types of composite specimens were studied by static displacement-controlled bi-shear (SDS), cyclic force-controlled bi-shear (CFS), and cyclic displacement-controlled bi-shear (CDS) tests. Two finite element models (FEMs) were established to calibrate and validate the interfacial material parameters. The results showed that adding reinforcement bars over the joints that connect the block and the overlay could improve the bearing capacity of the shear key. Formulae were proposed for the relation between shear force transfer and RDSK in engineering applications. The values of the interfacial material parameters used in the traction-separation model to simulate the interface between the shear key and beam were recommended.

4.
J Hydrol Eng ; 26(9)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34497453

RESUMO

Hydrologic model intercomparison studies help to evaluate the agility of models to simulate variables such as streamflow, evaporation, and soil moisture. This study is the third in a sequence of the Great Lakes Runoff Intercomparison Projects. The densely populated Lake Erie watershed studied here is an important international lake that has experienced recent flooding and shoreline erosion alongside excessive nutrient loads that have contributed to lake eutrophication. Understanding the sources and pathways of flows is critical to solve the complex issues facing this watershed. Seventeen hydrologic and land-surface models of different complexity are set up over this domain using the same meteorological forcings, and their simulated streamflows at 46 calibration and seven independent validation stations are compared. Results show that: (1) the good performance of Machine Learning models during calibration decreases significantly in validation due to the limited amount of training data; (2) models calibrated at individual stations perform equally well in validation; and (3) most distributed models calibrated over the entire domain have problems in simulating urban areas but outperform the other models in validation.

5.
Sci Total Environ ; 714: 136624, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32018948

RESUMO

Dissolved Reactive Phosphorus (DRP) losses from agricultural fields promote algae growth in water bodies, and may increase the risk of Harmful Algal Blooms (HABs). Using existing data from the Lake Erie Basin, we applied multiple regression analysis to better understand the impacts of both site-specific conditions (e.g., soil types/properties) and management practices (e.g., Agricultural Conservation Practices [ACP]) on annual DRP losses in subsurface and surface runoff. Results showed that soil properties significantly impact DRP losses. Greater DRP losses were associated with increased soil pH and Soil Test Phosphorus (STP). By contrast, soil organic matter (SOM) was inversely correlated with DRP losses. Soil clay content was also inversely correlated with DRP subsurface losses, but had no impact on DRP surface losses. The ACPs evaluated had varied effectiveness on DRP loss reduction. Cropping systems involving soybean could reduce DRP subsurface losses, whereas winter cover crops could cause unintended DRP subsurface losses. Cropping systems involving soybean and cover crops, however, had no impact on DRP surface losses. In addition, no-till and conservation tillage also enhanced DRP losses compared to conventional tillage, particularly for soils with high SOM and/or high clay content. Precipitation amount and fertilizer application rate significantly increased DRP surface losses as expected. Fertilizer application rate, however, had no impact on DRP subsurface losses. The impact of precipitation amount on DRP subsurface losses depends on STP levels. Precipitation amount significantly increases DRP subsurface losses when STP is higher (>41 mg kg-1 in this analysis). The optimal STP level for crop growth is 30 to 50 mg kg-1. Results from this study help us to better understand DRP losses and the effectiveness of ACPs for controlling them. We suggest taking soil surveys and soil tests into consideration when designing and/or implementing ACPs to manage DRP losses. Furthermore, the method we used for this study could be applied to other agricultural regions to investigate impacts of site-specific conditions and management practices on water quality.

6.
ACS Med Chem Lett ; 9(7): 719-724, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30034607

RESUMO

The discovery and optimization of a series of 2-morpholino-pyrimidine derivatives containing various sulfonyl side chains at the C4 position led to the identification of compound 26 as a potent dual PI3K/mTOR inhibitor. It exhibited high inhibitory activity against PI3Kα/ß/γ/δ (IC50 = 20/376/204/46 nM) and mTOR (IC50 = 189 nM), potent functional suppression of AKT phosphorylation (IC50 = 196 nM), and excellent antiproliferative effects on a panel of cancer cells. Enzymic data and modeling simulation indicate that a cyclopropyl ring on the C4 sulfone chain and a fluorine on the C6 aminopyridyl moiety are responsible for its maintained PI3K activity and enhanced mTOR potency, respectively. Furthermore, compound 26 exhibited higher efficiency in the HT-29 colorectal carcinoma xenograft model at the daily dose of 3.75 and 7.5 mg/kg relative to BKM120 at the dose of 15 and 30 mg/kg.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...